资源类型

期刊论文 285

会议视频 2

年份

2023 23

2022 26

2021 16

2020 21

2019 18

2018 12

2017 17

2016 7

2015 7

2014 16

2013 10

2012 9

2011 15

2010 30

2009 8

2008 15

2007 9

2006 8

2005 2

2004 5

展开 ︾

关键词

动力气垫 2

地效翼船 2

地面应用系统 2

多联产 2

数值模拟 2

热电联产 2

热释放速率 2

6016 合金 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

ANFIS 1

Cu(Inx 1

FY-3卫星 1

Ga1–x)Se2 1

HY-2 卫星 1

HY-2 卫星地面应用系统 1

Inconel 718合金 1

Laves相 1

展开 ︾

检索范围:

排序: 展示方式:

R&D of the ground-coupled heat pump technology in China

Nairen DIAO, Ping CUI, Junhong LIU, Zhaohong FANG,

《能源前沿(英文)》 2010年 第4卷 第1期   页码 47-54 doi: 10.1007/s11708-009-0080-3

摘要: The ground-coupled heat pump (GCHP) systems have been identified as one of the best sustainable energy technologies for space heating and cooling in residential and commercial buildings. In this paper, research on and development of the GCHP technology in China are summarized. New models are presented for efficient thermal analysis of ground heat exchangers, of which one- and two-dimensional solid cylindrical source models and their analytical solutions are devised to deal with pile ground heat exchangers. Analytical solutions are also derived for vertical and inclined finite line source models as well as for a groundwater advection model. Explicit solutions of a quasi-three-dimensional model can be used to better evaluate the thermal resistance inside boreholes. Studies on hybrid GCHP systems and the thermal response test in China are also commented.

关键词: ground source heat pump     ground heat exchanger     HVAC     China    

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第4期   页码 479-486 doi: 10.1007/s11708-013-0277-3

摘要: There is currently a growing demand for developing efficient techniques for cooling integrated electronic devices with ever increasing heat generation power. To better tackle the high-density heat dissipation difficulty within the limited space, this paper is dedicated to clarify the heat transfer behaviors of the liquid metal flowing in mini-channel exchangers with different geometric configurations. A series of comparative experiments using liquid metal alloy Ga68%In20%Sn12% as coolant were conducted under prescribed mass flow rates in three kinds of heat exchangers with varied geometric sizes. Meanwhile, numerical simulations for the heat exchangers under the same working conditions were also performed which well interpreted the experimental measurements. The simulated heat sources were all cooled down by these three heat dissipation apparatuses and the exchanger with the smallest channel width was found to have the largest mean heat transfer coefficient at all conditions due to its much larger heat transfer area. Further, the present work has also developed a correlation equation for characterizing the Nusselt number depending on Peclet number, which is applicable to the low Peclet number case with constant heat flux in the hydrodynamically developed and thermally developing region in the rectangular channel. This study is expected to provide valuable reference for designing future liquid metal based mini-channel heat exchanger.

关键词: heat exchanger     liquid metal     mini-channel     heat dissipation     heat transfer coefficient    

Sensitivity analysis and numerical experiments on transient test of compact heat exchanger surfaces

REN Hesheng, LAI Lingjun, CUI Yongzheng

《能源前沿(英文)》 2008年 第2卷 第4期   页码 374-380 doi: 10.1007/s11708-008-0079-1

摘要: A single-blow transient testing technique considering the effect of longitudinal heat conduction is suggested for determining the average convection heat transfer coefficient of compact heat exchanger surface. By matching the measured outlet fluid temperature variation with similar theoretical curves, the dimensionless longitudinal conduction parameter , the time constant of the inlet fluid temperature , and the number of heat transfer units can be determined simultaneously using the Levenberg-Marquardt nonlinear parameter estimation method. Both sensitivity analysis and numerical experiments with simulated measurements containing random errors show that the method in the present investigation provides satisfactory accuracy of the estimated parameter , which characterizes the heat transfer performance of compact heat exchanger surfaces.

关键词: coefficient     dimensionless longitudinal     longitudinal     temperature     conduction    

Automated retrofit targeting of heat exchanger networks

Timothy G. Walmsley, Nathan S. Lal, Petar S. Varbanov, Jiří J. Klemeš

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 630-642 doi: 10.1007/s11705-018-1747-2

摘要:

The aim of this paper is to develop a novel heat exchanger network (HEN) retrofit method based on a new automated retrofit targeting (ART) algorithm. ART uses the heat surplus-deficit table (HSDT) in combination with the Bridge Retrofit concepts to generate retrofit bridges option, from which a retrofit design may be formulated. The HSDT is a tabular tool that shows potential for improved re-integration of heat source and sink streams within a HEN. Using the HSDT, retrofit bridges—a set of modifications that links a cooler to a heater to save energy—may be identified, quantified, and compared. The novel retrofit method including the ART algorithm has been successfully implemented in Microsoft ExcelTM to enable analysis of large-scale HENs. A refinery case study with 27 streams and 46 existing heat exchangers demonstrated the retrofit method’s potential. For the case study, the ART algorithm found 68903 feasible unique retrofit opportunities with a minimum 400 kW·unit−1 threshold for heat recovery divided by the number of new units. The most promising retrofit project required 3 new heat exchanger units to achieve a heat savings of 4.24 MW with a favorable annualised profit and a reasonable payback period.

关键词: process retrofit     pinch analysis     heat exchanger network     heat recovery    

Application of entransy dissipation theory in heat convection

Mingtian XU, Jiangfeng GUO, Lin CHENG,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 402-405 doi: 10.1007/s11708-009-0055-4

摘要: In the present work, formulas for calculating the rates of the local thermodynamic entransy dissipation in convective heat transfer in general, and the internal and external flows in particular, are established. Practically, these results may facilitate the application of entransy dissipation theory in thermal engineering. Theoretically they shed light on solving the contradiction of the minimum entropy production principle with balance equations in continuum mechanics.

关键词: entransy dissipation     heat convection     heat exchanger    

Characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles

Tingting DU, Wenjing DU

《工程管理前沿(英文)》 2019年 第6卷 第1期   页码 70-77 doi: 10.1007/s42524-019-0005-8

摘要:

The characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles (STHXsHB) were illustrated through a theoretical analysis and numerical simulation. The ideal helical flow model was constructed to demonstrate parts of the flow characteristics of the STHXsHB, providing theoretical evidence of short-circuit and back flows in a triangular zone. The numerical simulation was adopted to describe the characteristics of helical, leakage, and bypass streams. In a fully developed section, the distribution of velocity and wall heat transfer coefficient has a similar trend, which presents the effect of leakage and bypass streams. The short-circuit flow accelerates the axial velocity of the flow through the triangular zone. Moreover, the back flow enhances the local heat transfer and causes the ascent of flow resistance. This study shows the detailed features of helical flow in STHXsHB, which can inspire a reasonable optimization on the shell-side structure.

关键词: heat exchanger     overlapped helical baffle     triangular zone     helical flow    

Evaluation of the performance of a centralized ground-water heat pump system in cold climate region

Shilei LU,Zhe CAI,Li ZHANG,Yiran LI

《能源前沿(英文)》 2014年 第8卷 第3期   页码 394-402 doi: 10.1007/s11708-014-0310-1

摘要: The aim of this study is to evaluate the performance of a centralized open-loop ground-water heat pump (GWHP) system for climate conditioning in Beijing with a cold climate in China. Thus, a long-time test was conducted on a running GWHP system for the heating season from December 2011 to March 2012. The analysis of the testing data indicates that the average heat-pump coefficient of performance (COP) and the COP of the system (COPs) are 4.27 and 2.59. The low value and large fluctuation in the range of COP are found to be caused by the heat transfixion in the aquifer and the bypass in the circulation loop. Therefore, some suggestions are proposed to improve the performance for GWHPs in the cold climate region in China.

关键词: ground-water heat pump (GWHP)     actual coefficient of performance     heat transfixion    

Optimisation for interconnected energy hub system with combined ground source heat pump and borehole

Da HUO, Wei WEI, Simon Le BLOND

《能源前沿(英文)》 2018年 第12卷 第4期   页码 529-539 doi: 10.1007/s11708-018-0580-0

摘要: Ground source heat pumps (GSHP) give zero-carbon emission heating at a residential level. However, as the heat is discharged, the temperature of the ground drops, leading to a poorer efficiency. Borehole inter-seasonal thermal storage coupled with GSHP maintains the efficiency at a high level. To adequately utilize the high performance of combined GSHP and the borehole system to further increase system efficiency and reduce cost, such a combined heating system is incorporated into the interconnected multi-carrier system to support the heat load of a community. The borehole finite element (FE) model and an equivalent borehole transfer function are proposed and respectively applied to the optimisation to analyze the variation of GSHP performance over the entire optimisation time horizon of 24 h. The results validate the borehole transfer function, and the optimisation computation time is reduced by 17 times compared with the optimisation using the FE model.

关键词: borehole thermal storage     energy hub     ground source heat pumps (GSHP)     particle swarm optimisation    

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-freeheat exchangers

Haiyan LI, Jing LIU

《能源前沿(英文)》 2011年 第5卷 第1期   页码 20-42 doi: 10.1007/s11708-011-0139-9

摘要: Water is perhaps the most widely adopted working fluid in conventional industrial heat transport engineering. However, it may no longer be the best option today due to the increasing scarcity of water resources. Furthermore, the wide variations in water supply throughout the year and across different geographic regions also makes it harder to easily access. To address this issue, finding new alternatives to replace water-based technologies is imperative. In this paper, the concept of a water-free heat exchanger is proposed and comprehensively analyzed for the first time. The liquid metal with a low melting point is identified as an ideal fluid that can flexibly be used within a wide range of working temperatures. Some liquid metals and their alloys, which have previously received little attention in thermal management areas, are evaluated. With superior thermal conductivity, electromagnetic field drivability, and extremely low power consumption, liquid metal coolants promise many opportunities for revolutionizing modern heat transport processes: serving as heat transport fluid in industries, administrating thermal management in power and energy systems, and innovating enhanced cooling in electronic or optical devices. Furthermore, comparative analyses are conducted to understand the technical barriers encountered by advanced water-based heat transfer strategies and clarify this new frontier in heat-transport study. In addition, the unique merits of liquid metals that could lead to innovative heat exchanger technologies are evaluated comprehensively. A few promising industrial situations, such as heat recovery, chip cooling, thermoelectricity generation, and military applications, where liquid metals could play irreplaceable roles, were outlined. The technical challenges and scientific issues thus raised are summarized. With their evident ability to meet various critical requirements in modern advanced energy and power industries, liquid metal-enabled technologies are expected to usher a new and global era of water-free heat exchangers.

关键词: heat exchanger     liquid metal     water resource     heat transport enhancement     coolant     thermal management     process engineering     energy crisis     chip cooling    

Optimal design analysis of a tubular heat exchanger network with extended surfaces using multi-objective

Hassan HAJABDOLLAHI, Mohammad SHAFIEY DEHAJ, Babak MASOUMPOUR, Mohammad ATAEIZADEH

《能源前沿(英文)》 2022年 第16卷 第5期   页码 862-875 doi: 10.1007/s11708-022-0839-3

摘要: The present work aims to investigate the influence of extended surfaces (fins) on the multi-objective optimization of a tubular heat exchanger network (THEN). An increase in the heat transfer area using various extended surfaces (fins) to enhance the performance of the heat exchanger was used while considering the effectiveness and total heat transfer area as two objective functions. In addition to the simulation of simple fins, a new set of fins, called constructal fins, was designed based on the constructal theory. Tubular heat exchanger network design parameters were chosen as optimization variables, and optimization results were achieved in such a way as to enhance the effectiveness and decrease the total heat transfer area. The results show the importance of constructal fins in improving the objective functions of heat exchangers. For instance, the simple fins case enhances the effectiveness by up to 5.3% compared to that without fins (usual heat exchanger) while using constructal fins, in addition to the 7% increment of effectiveness, reduces the total heat transfer area by 9.47%. In order to optimize the heat exchanger, the heat transfer rate and cold fluid temperature must increase, and at the same time, the hot exiting fluid temperature should decrease at the same constant total heat transfer area, which is higher in the constructal fins case. Finally, optimized design variables were studied for different cases, and the effects of various fins were reported.

关键词: constructal theory     extended surface     effectiveness     total heat transfer area     multi-objective optimization    

Predictor-corrector algorithm for solving quasi-separated-flow and transient distributed-parameter model for heat

Ping ZHANG, Guoliang DING

《能源前沿(英文)》 2010年 第4卷 第4期   页码 535-541 doi: 10.1007/s11708-010-0113-y

摘要: The successive sub?stitution (SS) method is a suitable approach to solving the transient distributed-parameter model for heat exchangers. However, this method must be enhanced because its convergence heavily depends on the iterative initial pressure. When the iterative initial pressure is improperly assigned, the calculated flow rates become negative values, causing the state parameters to exhibit negative values as well. Therefore, a predictor-corrector algorithm (PCA) is proposed to improve the convergence of the SS method. A predictor is developed to determine an appropriate iterative initial pressure. Total fluid mass is adopted as the convergence criterion of pressure iteration instead of outlet flow rate as is done in the SS method. Convergence analysis and case study of the PCA and SS method are conducted, which show that the PCA has better convergence than the SS method under the same working conditions.

关键词: algorithm     convergence     heat exchanger     modeling     transient    

Comprehensive comparison of small-scale natural gas liquefaction processes using brazed plate heat exchangers

Jitan WU, Yonglin JU

《能源前沿(英文)》 2020年 第14卷 第4期   页码 683-698 doi: 10.1007/s11708-020-0705-0

摘要: The brazed plate heat exchanger (BPHE) has some advantages over the plate-fin heat exchanger (PFHE) when used in natural gas liquefaction processes, such as the convenient installation and transportation, as well as the high tolerance of carbon dioxide (CO ) impurities. However, the BPHEs with only two channels cannot be applied directly in the conventional liquefaction processes which are designed for multi-stream heat exchangers. Therefore, the liquefaction processes using BPHEs are different from the conventional PFHE processes. In this paper, four different liquefaction processes using BPHEs are optimized and comprehensively compared under respective optimal conditions. The processes are compared with respect to energy consumption, economic performance, and robustness. The genetic algorithm (GA) is applied as the optimization method and the total revenue requirement (TRR) method is adopted in the economic analysis. The results show that the modified single mixed refrigerant (MSMR) process with part of the refrigerant flowing back to the compressor at low temperatures has the lowest specific energy consumption but the worst robustness of the four processes. The MSMR with fully utilization of cold capacity of the refrigerant shows a satisfying robustness and the best economic performance. The research in this paper is helpful for the application of BPHEs in natural gas liquefaction processes.

关键词: liquefied natural gas     brazed plate heat exchanger     energy consumption     economic performance     robustness    

Creep of brazed plate-fin structures in high temperature compact heat exchangers

Shantung TU, Guoyan ZHOU

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 355-362 doi: 10.1007/s11465-009-0065-2

摘要: In recent years, the need for high temperature heat exchangers to improve the efficiency of power and chemical conversion systems has been growing. However, the creep design of the high temperature compact heat exchangers has been a primary concern because the working temperature can be well above the creep limit of the materials. To establish the high temperature design criterion for compact heat exchangers, creep behavior of the plate-fin structures and brazed joints are investigated in this paper. The time-dependent deformation and bending stress of the plate-fin structures are obtained analytically by simplifying the fins to elastic springs. The creep damage evolution inside the brazed joint is studied by coupling the finite element method with a damage constitutive equation. The significant effect of creep property mismatch in the brazed joint on the creep strength is demonstrated.

关键词: compact heat exchanger     creep     damage     brazing joint    

Numerical simulation and experimental research on heat transfer and flow resistance characteristics ofasymmetric plate heat exchangers

Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU

《能源前沿(英文)》 2020年 第14卷 第2期   页码 267-282 doi: 10.1007/s11708-020-0662-7

摘要: The asymmetric plate heat exchanger (APHE) has the possibility of achieving balanced pressure drops on both hot and cold sides for situations with unbalanced flow, which may in turn enhance the heat transfer. In this paper, the single-phase water flow and heat transfer of an APHE consisted of two types of plates are numerically (400≤ ≤12000) and experimentally (400≤ ≤3400) investigated. The numerical model is verified by the experimental results. Simulations are conducted to study the effects of , an asymmetric index proposed to describe the geometry of APHEs. The correlations of the Nusselt number and friction factor in the APHEs are determined by taking and working fluids into account. It is found that an optimal exists where the pressure drops are balanced and the heat transfer area reaches the minimum. The comparison between heat transfer and flow characteristics of the APHEs and the conventional plate heat exchanger (CPHE) is made under various flow rate ratios of the hot side and the cold side and different allowable pressure drops. The situations under which APHE may perform better are identified based on a comprehensive index .

关键词: plate heat exchanger     asymmetric     simulation     correlation     heat transfer enhancement    

Experimental study of primary and secondary side coupling natural convection heat transfer characteristicsof the passive residual heat removal system in AP1000

Zhimin QIU, Daogang LU, Jingpin FU, Li FENG, Yuhao ZHANG

《能源前沿(英文)》 2021年 第15卷 第4期   页码 860-871 doi: 10.1007/s11708-021-0744-1

摘要: Passive residual heat removal heat exchanger (PRHR HX), which is a newly designed equipment in the advanced reactors of AP1000 and CAP1400, plays an important role in critical accidental conditions. The primary and secondary side coupling heat transfer characteristics of the passive residual heat removal system (PRHRS) determine the capacity to remove core decay heat during the accidents. Therefore, it is necessary to investigate the heat transfer characteristics and develop applicable heat transfer formulas for optimized design. In the present paper, an overall scaled-down natural circulation loop of PRHRS in AP1000, which comprises a scaled-down in-containment refueling water storage tank (IRWST) and PRHR HX models and a simulator of the reactor core, is built to simulate the natural circulation process in residual heat removal accidents. A series of experiments are conducted to study thermal-hydraulic behaviors in both sides of the miniaturized PRHR HX which is simulated by 12 symmetric arranged C-shape tubes. For the local PRHR HX heat transfer performance, traditional natural convection correlations for both the horizontal and vertical bundles are compared with the experimental data to validate their applicability for the specific heat transfer condition. Moreover, the revised natural convection heat transfer correlations based on the present experimental data are developed for PRHR HX vertical and lower horizontal bundles. This paper provides essential references for the PRHRS operation and further optimized design.

关键词: passive residual heat removal heat exchanger (PRHR HX)     C-shape tube     revised heat transfer correlations     coupled natural convection    

标题 作者 时间 类型 操作

R&D of the ground-coupled heat pump technology in China

Nairen DIAO, Ping CUI, Junhong LIU, Zhaohong FANG,

期刊论文

Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic

Manli LUO, Jing LIU

期刊论文

Sensitivity analysis and numerical experiments on transient test of compact heat exchanger surfaces

REN Hesheng, LAI Lingjun, CUI Yongzheng

期刊论文

Automated retrofit targeting of heat exchanger networks

Timothy G. Walmsley, Nathan S. Lal, Petar S. Varbanov, Jiří J. Klemeš

期刊论文

Application of entransy dissipation theory in heat convection

Mingtian XU, Jiangfeng GUO, Lin CHENG,

期刊论文

Characteristics of flow and heat transfer of shell-and-tube heat exchangers with overlapped helical baffles

Tingting DU, Wenjing DU

期刊论文

Evaluation of the performance of a centralized ground-water heat pump system in cold climate region

Shilei LU,Zhe CAI,Li ZHANG,Yiran LI

期刊论文

Optimisation for interconnected energy hub system with combined ground source heat pump and borehole

Da HUO, Wei WEI, Simon Le BLOND

期刊论文

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-freeheat exchangers

Haiyan LI, Jing LIU

期刊论文

Optimal design analysis of a tubular heat exchanger network with extended surfaces using multi-objective

Hassan HAJABDOLLAHI, Mohammad SHAFIEY DEHAJ, Babak MASOUMPOUR, Mohammad ATAEIZADEH

期刊论文

Predictor-corrector algorithm for solving quasi-separated-flow and transient distributed-parameter model for heat

Ping ZHANG, Guoliang DING

期刊论文

Comprehensive comparison of small-scale natural gas liquefaction processes using brazed plate heat exchangers

Jitan WU, Yonglin JU

期刊论文

Creep of brazed plate-fin structures in high temperature compact heat exchangers

Shantung TU, Guoyan ZHOU

期刊论文

Numerical simulation and experimental research on heat transfer and flow resistance characteristics ofasymmetric plate heat exchangers

Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU

期刊论文

Experimental study of primary and secondary side coupling natural convection heat transfer characteristicsof the passive residual heat removal system in AP1000

Zhimin QIU, Daogang LU, Jingpin FU, Li FENG, Yuhao ZHANG

期刊论文